Welcome and Introductions

Ramaswamy Adisesh:
Data Processing Manager III
California Project Management Office
Department of Technology

Cynthia Guest:
Data Processing Manager IV
Manager CA-MMIS M & O
Department of Health Care Services
Agenda

- Objectives
- Time Management Knowledge Area
 - Inputs
 - Tools & Techniques
 - Outputs
 - Practical Application
- Q & A
Objectives

- Familiarity With Project Schedule Development & Management
 - What are the steps to developing a schedule
 - What Tools and Techniques to use
 - How to Monitor Schedule
- Get PMP Study Tips
- Find Sources for Additional Knowledge
Ice Breaker

Finish one sentence below:

- The best project – Why?
- The worst project – Why?
- The riskiest thing I ever did was – What did you learn?
Opening Thoughts

- Doubt and skepticism
 - It will never work
 - Schedule always slips and no point in developing one
 - Why waste time planning?

Giving up on a goal because of a setback is like slashing your other three tires because you got a flat...
Opening Thoughts

What Is Not Measured Cannot Be Managed

- To measure changes, you have to establish baselines
- Schedule management is all about monitoring changes
Opening Thoughts

Lost and Confused Alice approaches the Cheshire cat and asks, "Would you tell me, please, which way I ought to go from here?"
"That depends a good deal on where you want to get to," said the Cat.
"I don’t much care where," said Alice.
"Then it doesn’t matter which way you go," said that Cat.

- Managing projects successfully is hard work & can be complicated.
- Be aware of the end game & goals ("Big Picture")
- Plan and follow past successful practices or risk ending up like Alice playing the Red Queen.
Knowledge Area: Time Management

- Define Activities
- Sequence Activities
- Estimate Resources
- Estimate Duration
- Develop Schedule
- Control Schedule

Plan Schedule Management
Project Time Management: Overview

- **Plan Schedule Management**
 - PMBOK: Process of establishing the policies, procedures, and documentation for planning, developing, managing, executing, and controlling the project schedule

- **Define Activities**
 - PMBOK: Identify & document specific activities to produce deliverables
 - PMBOK: Break down work packages for estimating, scheduling, executing, monitoring, and controlling
Project Time Management: Overview

- **Sequence Activities**
 - PMBOK: Identify & document relationships between activities
 - PMBOK: Logical sequence to obtain greatest efficiency with constraints

- **Estimate Resources**
 - PMBOK: Estimate type and quantity of material, human resources, equipment, or supplies
Project Time Management: Overview

- **Estimate Durations**
 - **PMBOK**: Estimate number of work periods needed to complete each activity with estimated resources.

- **Develop Schedule**
 - **PMBOK**: Analyze activity sequence, duration, resources, and constraints to create the project schedule model.

- **Control Schedule**
 - **PMBOK**: Monitor status of activities to update progress and manage changes by taking corrective or preventive actions to minimize risk.
Knowledge Area: Time Management

- Define Activities
- Sequence Activities
- Estimate Resources
- Develop Schedule
- Control Schedule
- Plan Schedule Management
- Estimate Duration
Plan Schedule Management: Overview

- In this step we develop
 - Schedule Management Plan
 - This guides the rest of the schedule Mgmt. activities
 - Forms the basis for all future schedule/time management activities
Plan Schedule Management: Inputs

- **Project Management Plan**
 - Scope, WBS, Cost, Risk, Communications Decisions

- **Project Charter**
 - Milestones and Approval Requirements

- **Enterprise Environmental Factors**
 - Culture, Structure, Resource Availability and Skills, PM Software, External Standards, Best Practices, Governance

- **Organizational Process Assets**
 - Monitoring & Reporting Tools, Historical Data, Schedule Control Tools, Templates, Governance Procedures
Plan Schedule Management: Tools & Techniques

- **Expert Judgment**
 - Historical data and gurus provide insight from prior projects and suggest opportunities or pitfalls

- **Analytical Techniques**
 - Scheduling methods, estimating tools or techniques, PM software, top down, bottom up, rolling wave, Agile Product Grooming, alternative analysis, issue papers, leads and lags

- **Meetings (Yes, MORE meetings)**
 - Assemble the brain trust to develop the schedule management plan for buy-in, ensuring stakeholders needs are met, reality checks, collaboration, and communication

- **Templates, Process maps, instructions**
Plan Schedule Management: Outputs

- **Schedule Model Development**
 - Methodology and tools

- **Level of Accuracy**
 - Range used for realistic accuracy duration estimates and possible contingency times

- **Units of Measure**
 - Staff hours, days, materials tons, cubic yards, metric defined for each resource

- **Organizational Procedures Links**
 - WBS developed in Scope Management

- **Project Schedule Model Maintenance**
 - Process used to update status and record progress during project execution

- **Control Thresholds**
 - Variance rules to indicate when action needs to be taken

- **Rules of Performance Measurement**
 - % complete, Earned Value, Schedule Variance, Schedule Performance Index, Baselines

- **Reporting Formats**
 - Format and frequency

- **Reporting Venues**

- **Process Descriptions**
 - Describe all the above

- **Escalation process**
Plan Schedule Management: Summary

Inputs:
- Project Management Plan, Project Charter
- Enterprise Environmental Factors
- Organizational Process Assets

Tools & Techniques:
- Expert Judgment
- Analytical Techniques
- Meetings

Output Schedule Management Plan:
- Schedule Management Plan
Knowledge Area: Time Management

- Define Activities
- Sequence Activities
- Estimate Resources
- Estimate Duration
- Develop Schedule
- Control Schedule
Define Activity: Overview

Key Points

- Flows from Work Breakdown Structure
 - PMBOK: **Hierarchical** decomposition of the total scope of work...to accomplish the project objectives and create the required **deliverables**
 - Lowest level of WBS is the work package – products and deliverables
- Work packages broken down or decomposed to schedule activities
- Activities should be small enough to estimate for resources, time, and cost and can be assigned to a single person or group
Define Activity: Inputs

- **Schedule Management Plan**
 - Level of detail needed to describe the work
 - How the process of define activities will be done

- **Scope Baseline**
 - Provides explicit guidance to define activities
 - WBS, WBS dictionary

- **Enterprise Environmental Factors**
 - Culture, Structure, Resource Availability and Skills, PM Software, External Standards, Best Practices, Governance

- **Organizational Process Assets**
 - Monitoring & Reporting Tools, Historical Data, Schedule Control Tools, Templates, Governance Procedures
Define Activity: Tools & Techniques

- **Decomposition**
 - Breaking down, or dividing and subdividing the WBS work packages into smaller, more manageable activities...verbs instead of nouns

- **Rolling Wave Planning**
 - Iterative planning technique
 - Imminent (current month/quarter) activities are identified in great detail
 - Activities further in the future are planned in less detail or higher level
 - Progressive elaboration

- **Expert Judgment**
 - Experienced and skilled team members or experts will create activities...the organization may have templates from previous similar projects
Define Activity: Outputs

- **Activity List**
 - Complete and total list of all activities, at the appropriate level of detail
 - Should include an activity identifier and sufficient description so team members understand what they are to do
 - Unique title for each activity
 - Should point to one and only one WBS work package

- **Activity Attributes**
 - Have durations, usually have resources, may have costs
 - Additional attributes are described in resources, duration, and order are defined
 - Used for schedule model development and for sorting or displaying activities in different reports

- **Milestones**
 - Significant point or event in a project
 - Have zero duration, no resources, no cost
 - Should be identified in Schedule Management Plan
 - May be contractually related or a requirement from the organization’s standards
 - Mandatory requirements
Define Activity: Summary

Inputs:
- Schedule Management Plan, Scope Baseline
- Enterprise Environmental Factors
- Organizational Process Assets

Tools & Techniques:
- Decomposition
- Rolling Wave or Other Activity Processes
- Expert Judgment

Output:
- Activity List
- Activity Attributes
- Milestone List
Knowledge Area: Time Management

Plan Schedule Management

- Define Activities
- Sequence Activities
- Estimate Resources
- Estimate Duration
- Develop Schedule
- Control Schedule
Sequence Activities: Overview

- Planning Process that Creates a sequenced representation of schedule activities called the;
 - Project Schedule Network Diagrams
 - Contains activity/task dependencies or links (Implied or explicitly stated)
 - Network Diagram shows the “rules” that govern the order in which the activities must be performed
Sequence Activities: Inputs

- **Schedule Management Plan**
 - IDs scheduling methods and tools

- **Activity List**
 - Includes Activity Attributes
 - Describes mandatory sequence

- **Milestone List**
 - Specific dates for certain milestones

- **Project Scope Statement**
 - Details that impact sequence
 - Ensure that activity list and sequence is complete and meets objectives of the project
Sequence Activities: Inputs

- Enterprise Environmental Factors
 - Culture, Structure, Resource Availability and Skills, PM Software, External Standards, Best Practices, Governance
 - Government / Industry standards,
 - Framework, Tools and technology (CA-PMM, MS-Project)

- Organizational Process Assets
 - Project knowledgebase
 - Polices, procedures and guidelines
 - Templates
 - Scheduling methodology
Sequence Activities: Tools & Techniques

- **Precedence Diagramming Method (PDM)**
 - Activity-on-node is a type of PDM and is used by most PM scheduling software products
 - Finish to start, finish to finish, start to start, start to finish

- **Dependency Determination**
 - Determines which activities must precede which ones
 - Mandatory, discretionary, external, and internal
 - e.g., Legal and contractual required steps

- **Leads and Lags**
 - A lead lets you start a successor activity sooner
 - A lag is the time needed to delay a successor activity
Rectangular nodes - Activity Node (Represents Activity)
Arrows - Represents Dependency.
(Activity J cannot start till both H and E are finished).
Numbers - Represent Units of Duration.
Task Dependencies

- **Finish to Start**
 - A FS B = B cannot start till A is finished

- **Finish to Finish**
 - A FF B = B cannot finish before A finishes

- **Start to Start**
 - A SS B = B cannot start till A has started

- **Start to Finish**
 - A SF B = B Cannot finish until A Starts
Critical Path Method (CPM)

- Schedule analysis method focusing on the critical path
- Will be covered later in schedule development section
Sequence Activities: Outputs

- Project Schedule Network Diagram
 - Any unusual activity sequences should be fully described

- Project Document Updates
 - Activity list
 - Activity Attributes
 - Milestone list
 - Risk Register
Sequence Activities: Summary

Inputs:
- Schedule Management Plan, Project Scope Document
- Activity List, Activity Attributes
- Milestone List, Enterprise Environmental Factors
- Organizational Process Assets

Tools & Techniques:
- Precedence Diagramming Method
- Dependency Determination
- Leads and Lags

Output:
- Project Schedule Network Diagrams
- Project Document Updates
Knowledge Area: Time Management

Plan Schedule Management

- Define Activities
- Sequence Activities
- Estimate Resources
- Develop Schedule
- Control Schedule
- Estimate Duration
Estimate Resources: Overview

- **PMBOK**: Type, quantity, and characteristics...to complete an activity...allows more accurate cost and duration estimates

- Resources are personnel, material, equipment, infrastructure, etc.
 - Number, type, skill set may change duration or level of quality

- Resources should be estimated and assigned to each activity

- Resource pool may exist
Estimate Resources: Inputs

- Schedule Management Plan
 - Describes level of accuracy and units of measure
- Activity List
- Activity Attributes
- Resource Calendar
 - Who is available, when, how long, what days or times, geographical location, KSAs
- Risk Register
 - Risk events may impact selection and availability
- Activity Cost Estimates
 - Senior vs. junior
- Enterprise Environmental Factors
- Organizational Process
 - Staffing rules such as no overtime
 - Ability to gain resources (BCP)
 - Rent or buy equipment or software
Estimate Resources: Tools & Techniques

■ Expert Judgment
 ■ Requires specialized knowledge in resource planning & estimating

■ Alternative Analysis
 ■ Should we use a senior or junior C#/.net programmer?
 ■ Build, rent, buy?

■ Published Estimating Data
 ■ Organization standards (e.g., Small Project – 1 PM, 1 Architect etc.
 ■ Data published by different industries which provide recognized standards for estimating resources
Estimate Resources: Tools & Techniques

- **Bottom-up Estimating**
 - Aggregate the estimates of smaller work packages
 - *MOST EFFECTIVE SCHEDULING METHOD*
 - Document dependencies and assumptions

- **Project Management Software**
 - Resource breakdown structures, rates, and calendars
 - Example is MS Project Enterprise can hold this data
Estimate Resources: Outputs

- **Activity Resource Requirements**
 - Types and quantity needed for each activity
 - Will be used to estimate resources for each work package or work period
 - Can include basis for estimation and assumptions made

- **Resource Breakdown Structure**
 - Graphical or hierarchical chart similar to the WBS which groups resources needed by category & type

- **Project Documents Updates**
 - Includes: activity list, activity schedules, calendars
Estimate Resources: Summary

Inputs:
- Schedule Management Plan, Activity List, Activity Attributes
- Resource Calendars, Risk Register, Activity Cost Estimates
- Enterprise Environmental Factors, Organizational Process Assets

Tools & Techniques:
- Expert Judgment, Alternatives Analysis
- Published Estimating Data, Bottom-Up Estimating
- Project Management Software

Output:
- Activity Resource Requirements
- Resource Breakdown Structure
- Project Document Updates
SHORT BREAK

Please be back in 10 minutes
Knowledge Area: Time Management

- Define Activities
- Sequence Activities
- Estimate Resources
- Estimate Duration
- Develop Schedule
- Control Schedule
Estimate Activity Duration: Overview

- Planning process that determines how long each of the scheduled activities take
 - Closely associated with Activity Resource Estimation
 - Generally done together
- Results in Activity Duration Estimates
Estimate Activity Duration: Inputs

- **Inputs**
 - **Schedule Management Plan**
 - Describes method & level of accuracy
 - **Activity List & Attributes**
 - Activities that we need to resource estimates for
 - Attributes drive the resource requirements
 - **Activity Resource Requirements, Calendars, Breakdown Structure**
 - Resource requirements drive the duration
 - E.g., Skill/Capacity of resources drives the duration (Jr. engr. vs Sr. engr.)
 - **Project Scope Statement, Risk Register**
 - May include contract requirements, risks may point out that key resources may be unavailable
 - **Enterprise Environmental Factors & Organizational Process Assets**
 - Estimating software, productivity metrics, historical information, lessons learned, organizational maturity level
Estimate Activity Duration: Tools & Techniques

- **Expert Judgment**
 - May help with reality checks or reconciling differences in differing estimation results

- **Analogous Estimating**
 - Estimate based on actual duration data from similar activities performed previously or on other projects.

- **Three Point Estimation (PERT Estimate)**
 - Uses weighted average of most likely (t_M), Optimistic (t_0), and Pessimistic (t_P)
 - Triangular $t_E = (t_M + t_0 + t_M)/3$
 - Beta Distribution $t_E = (4t_M + t_0 + t_P)/6$
 - SD of PERT = $(t_P - t_0) ÷ 6$
Estimate Activity Duration: Tools & Techniques

- **Parametric Estimating**
 - Uses an algorithm such as story point or function point analysis and actual duration data from previous or similar activities
 - E.g., Cocomo Model (Effort = a * (KLOC)^b * c... etc.)

- **Group Decision Making (Bottom-Up)**
 - Engages team members, improves commitment by team
 - Task members participate in the estimating process

- **Reserve Analysis**
 - Set aside for unforeseen or risk contingency

- **Fiat (Top Down)**
 - Boss says to do it by a certain date
 - Legislative mandate (e.g., cover California Portal)
Estimate Activity Duration: Outputs

Activity Duration Estimates
- The length of time (in days, weeks, etc.) each activity is expected to last
- May be expressed as a range (Accuracy of estimate)

Project Document Updates
- New or changed activity or resource attributes
Estimate Activity Duration: Summary

Inputs:
- Schedule Management Plan, Activity List, Attributes
- Activity Resource Requirements, Calendar
- Project Scope Statement, Risk Register
- Resource Breakdown Structure, Enterprise & Organizational Assets

Tools & Techniques:
- Expert Judgment
- Analogues Estimation, Parametric Estimating
- 3 Point Estimating, Group Decision Making
- Reserve Analysis

Output:
- Activity Duration
- Project Documents Updates
Knowledge Area: Time Management

Plan Schedule Management

- Define Activities
- Sequence Activities
- Estimate Resources
- Estimate Duration
- Develop Schedule
- Control Schedule
Develop Schedule: Overview

- Planning process that creates a Project schedule
 - Integrates
 - Activities
 - Sequencing
 - Resources
 - Duration
- Creates a schedule baseline
Develop Schedule: Overview

- When you are done, it will answer
 - What/Which Activities Must be performed?
 - Activity List
 - In what order
 - Network Diagram / Dependencies
 - When can it be performed
 - Resource Availability
 - How long will it take
 - Activity Duration
- May be iterative
 - Remember rolling wave planning
- See the PMI Practice Standard for Scheduling
Develop Schedule: Inputs

- **Schedule Management Plan**
 - Identifies method, tools, & calculations

- **Activity List, Attributes,**
 - Logical ordering

- **Project Schedule Network Diagrams**
 - Logical ordering

- **Resource Requirements, Calendars, Activity Duration Estimates**
 - Availability, quantitative durations

- **Scope Statement, Risk Register, Project Staff Assignments, Resource Breakdown Structure**
 - Assumptions & constraints
 - Risks that impact schedule
 - Details of resources

- **Enterprise & Organizational Assets**
 - Standards, templates, communication channels
 - Methodology, calendars
Develop Schedule: Tools & Techniques

Schedule Network Analysis

- Uses the following techniques
 - Identifies early and late start & finish dates
 - Used for Critical Path Analysis
 - Can be used for compressing, crashing, or fast tracking a schedule
Project Network Diagram (AKA Precedence Diagram)

Rectangular nodes - Activity Node (Represents Activity)
Arrows - Represents Dependency.
(Activity J cannot start till both F and I are finished).
Numbers - Represent Units of Duration
Paths

St – A – B – C – D – Fi
St – E – F – Fi
St – E – F – J – Fi
St – G – H – I – J – Fi
Critical Path

A (2) → B (4) → C (3) → D (2)

St - A - B - C - D - Fi = 2 + 4 + 3 + 2 = 11
St - E - F - Fi = 7 + 5 = 12
St - E - F - J - Fi = 7 + 5 + 1 = 13
St - G - H - I - J - Fi = 3 + 2 + 1 + 1 = 7
Early Start / Finish

- Calculate Early Start and Finish To Optimize the Schedule
- Early Start & Finish Reduces Risk & May Free Up Resources

- Early Start
 - Earliest possible start date for an activity to begin

- Early Finish
 - Earliest date a task could finish

- These are calculated by forward pass
 - Left to Right
Early Start / Finish

Start

A (2) → B (4) → C (3) → D (2)

E (7) → F (5)

G (3) → H (2) → I (2) → J (1)

Finish
Late Start / Finish

- Late Start & Finish Help Manage Delay Risk
- Helps to optimize your resources

- Late Start
 - Latest possible time a task can start without delaying subsequent tasks

- Late Finish
 - Latest possible date an activity could finish without delaying subsequent tasks

- These are calculated by Backward Passes
 - Right to Left
Late Start / Finish

```
A (2) → B (4) → C (3) → D (2)

Start → E (7) → F (5) → Finish

G (3) → H (2) → I (2) → J (1)
```
Float

Float or Total Float

- Total float is the amount of time that an activity can be delayed without delaying the project completion date.
- On a critical path, the total float is zero.
- \[TF = \text{Duration} \text{ Critical Path} - \text{Duration} \text{ Non-Critical Path} \]
- \[TF_{\text{Activity}} = (\text{Late Finish} - \text{Early Finish}). \]

Free Float

- Free float is the amount of time that an activity can be delayed without delaying the Early Start of its successor activity.
- \[FF_{\text{Activity}} = \text{ES}_{\text{Next Activity}} - \text{EF}_{\text{Activity}} - 1 \]
Float Example

Start → A (5) → B (10) → C (2) → D (5) → Finish

St – A – B – C – D – Fi = 22 Days (Longest & Hence Critical Path)
St – A – E – F – D – Fi = 15 Days
Total float on Path_{AEFD} = 22 – 15 = 7 Days

Homework – Figure out Free Float for activities in the next section
Critical Path Method

- A technique for determining the longest path in your schedule
- Critical to manage the tasks on the critical path closely to deliver project on schedule
- By shortening the critical path, project duration can be improved
Critical Path

- Called critical because if one activity slips, the project finish will be delayed
- Tasks on these paths pose the greatest risks to the overall schedule and hence need special attention
- There can be more than one critical path
- As the project progresses, critical path could change
Issues with Critical Path

- Assumes unlimited resources
 - All resources are available all the time
 - Managing resources may be difficult due to other activities
 - Very optimistic way of managing scheduling

- Misuse of float and slack
 - Parkinson’s law – Work expands to fill the available time!
 - Team members misuse slack and float

- Delays accumulate, but Gains do not
Critical Chain Method (CCM)

Buffers - Duration ("Non-Activity") buffers are added to manage uncertainty

- Project buffer is at the end of the critical path
 - Usually you take 50% of time for contingency built into each task and build the buffer
 - Saves overall Schedule time

- Feeder buffers added to non-critical to critical path chain of activities (non-critical path activity feeds into critical path)
 - Feeding Buffers protect critical chain from slippage along the feeding chains

- Resource buffers – Dummy activities with resources allocated

- Manage time remaining in buffers
- Improves probability of On-Time delivery
CCM: Buffers (Before)
CCM: Buffers (After)

Assumes a contingency of 20%
Resource Optimization Techniques

Resource Levelling – Adjust the schedule dates to balance demand for shared or critical resources
- May lengthen critical path
- Reduces risk

Resource Smoothing – Adjust the schedule model for each activity to stay below predefined resource limits
- Maintains critical path
- Completion date is not changes
- Activities are delayed only within their Float.
Develop Schedule: Resource Levelling

Day 1
- Task A
 - Adi: 8 Hrs
 - Cyndi: 8 Hrs
- Task B
 - Adi: 8 Hrs
Adi: 16 Hrs
Cyndi: 8 Hrs

Day 2
- Task C
 - Adi: 8 Hrs
Adi: 8 Hrs

Day 3
- Adi: 8 Hrs

Day 1
- Task A
 - Adi: 8 Hrs
 - Cyndi: 8 Hrs
- Task B
 - Adi: 8 Hrs
Adi: 8 Hrs
Cyndi: 8 Hrs

Day 2
- Task B
 - Adi: 8 Hrs
Adi: 8 Hrs

Day 3
- Task C
 - Adi: 8 Hrs
Adi: 8 Hrs

Start

Start
Develop Schedule: Tools & Techniques

- **Modeling “What If” Analysis**
 - Process of evaluating scenarios in order to predict their effect.
 - Network analysis is performed to compute different scenarios
 - Differing resource loading or constraints
 - Differing equipment delivery times

- **Modeling “Simulation” Analysis**
 - Calculate multiple project durations with different assumptions and probability distributions (e.g. different 3 point estimates)
 - Monte Carlo simulation – Common technique
Develop Schedule: Tools & Techniques

- Leads & Lags
 - Refinements during network analysis to adjust start times of successor tasks
 - Leads advance a successor activity
 - Lags are used when a set time elapses that does not impact resources or work
Develop Schedule: Tools & Techniques

- **Crashing**
 - Schedule compression technique by increasing resources
 - Use 3 painters instead of 1 to finish the job early
 - **Issues of Crashing**
 - Some tasks cannot be compressed
 - Give an e.g.
 - Usually increases costs as returns are not linear
 - Increases communication and other overhead
 - Sometimes may increase the schedule
 - Mythical man month
 - Give an e.g.
Develop Schedule: Tools & Techniques

- **Fast Tracking**
 - Compressing of schedule by performing activates in parallel that otherwise would have been done in sequence
 - Instead of painting 1 wall at a time, paint 2 walls at a time
 - May be constrained by resources (why the e.g., above will not work)
 - Code in parallel while design is in progress using draft design document
 - Develop User Manuals while user interface design is in progress using draft design document
 - Increases risk
 - May increases cost if there is rework
 - May impact schedule due to rework
 - Takes a lot more co-ordination and configuration control
Develop Schedule: Outputs

- Project Schedule
 - Gantt Chats, Network Diagram, Milestone Charts

- Schedule Baseline
 - Schedule placed under change control
 - Compare to actual results to respond to variances
 - Component of project management plan

- Schedule Data
 - Used to describe and control the schedule
 - Resource requirements by time
 - Scheduling of contingency reserves
 - Alternate views: best case, worst case
Develop Schedule: Outputs

- Project Calendars
 - Working days and shifts
 - Shows available times vs. unavailable times
 - May be useful to have more than one calendar

- Project Management Plan and Project Documents Updates
 - Schedule baseline or management plan
 - Risk register, activity attributes, resource requirements
Schedule Development: Summary

Inputs:
- Schedule Management Plan, Activity List, Activity Attributes
- Activity Resource Requirements, Resource Calendars
- Activity Duration Estimates, Resource Breakdown Structure
- Project Network Diagram, Scope Statement, Risk Register
- Project Staff Assignments, Enterprise, Organizational

Tools & Techniques:
- Schedule Network Analysis,
- Critical Path Method, Critical Chain Method
- Resource Optimization Techniques, Modeling Techniques,
- Leads and Lags, Schedule Compression, Scheduling Tool

Output:
- Project Schedule, Baseline
- Schedule Data, Project Calendars,
- Project Management Plan Updates
- Project Document Updates
Knowledge Area: Time Management

- Define Activities
- Sequence Activities
- Estimate Resources
- Estimate Duration
- Develop Schedule
- Control Schedule

Plan Schedule Management
Control Schedule: Overview

- Monitoring and controlling process

 - Proactive
 - Monitor for variance
 - Recognize that change is occurring
 - Influencing the factors that create change
 - A good project manager knows how to do this!

 - Reactive
 - A mediocre project manager is always in this mode
 - Take corrective actions
 - Manage changes and change requests
 - To manage changes, follow schedule management plan
 - Closely related to change management
Control Schedule: Inputs

- **Project Management Plan**
 - Contains baseline, how schedule will be managed

- **Project Schedule**
 - Most recent version, percent complete, updates, in progress or not started activities

- **Work Performance Data**
 - Actual start, elapsed or remaining duration

- **Project Calendars**
 - Use to calculate forecasts based on past results

- **Schedule Data**

- **Organizational Process Assets**
 - Schedule policies & procedures, schedule tools, reporting templates
Control Schedule: Tools & Techniques

- **Performance Reviews**
 - Showing how the project is performing against the plan/schedule
 - Trends, Comparing actual progress against the critical path
 - Critical chain compares remaining buffer against needed buffer

- **Root cause for deviations from plan**
 - Cause and Effect diagram – Fishbone/Ishikawa
 - Pareto charts
 - Flowcharts
 - Scatter diagrams
 - Checklists
 - Control charts
Control Schedule: Earned Value

- Schedule Performance Index (SPI)

- SPI = EV \div PV \text{ (usually expressed in \$\$)}

 - EV = Earned Value = Actual \% Complete \times \text{BAC}

 - PV = Planned Value = Planned \% Complete \times \text{BAC}

 - BAC = Budget At completion

 - E.g., Task A takes 10 days by one programmer Costing \$100/day.

 - BAC = \$1000 \text{ (or 10 Days)}

 - Day 4 Planned Value is \$400 \text{ (or 4 Days)}

 - At day 4 if the \% complete is 30\% \text{ EV = \$300 (Or 3 Days)}

 - SPI on day 4 = 300/400 (or 3/4) = 0.75

 - We are performing at 75\% efficiency

- SPI less than 1 is bad

- SPI 1 or above are good
Control Schedule: Earned Value

- **Schedule Variance (SV)**
 - \(SV = EV - PV \) (Also expressed as $$)
 - 300 – 400 = -100 \) (or \(3 - 4 = -1 \))
 - Negative SVs are bad
 - Zero or Positive SVs are good

- **There are other EV calculations**
 - Out of scope for this session
Control Schedule: Tools & Techniques

- Project Management Software
 - Tracks planned vs. actual
 - Reports variances with helpful graphics
 - Forecast the effects of changes

- Resource Optimization
 - Scheduling resources to take advantage of their availability and project time

- Modeling
 - Review various scenarios
 - Risk Mitigation
 - Bring the schedule model in line with baseline and project management plan

- Lead and Lags
 - Adjustments
 - Starting tasks early

- Schedule Compression
 - Bring activities back into alignment
 - Use buffers
 - Add resources
 - Reduce scope

- Scheduling Tool
 - Updates to schedule model
 - Visual or graphic warnings of variances
Control Schedule: Outputs

- Work performed (% Complete)
 - Schedule Performance Index
 - Schedule Variance (SV)
 - Communication to stakeholders

- Schedule forecasts
 - Based on the current status (Work efficiency), when will the project milestones be accomplished?
 - At what efficiency do we need to run to bring the schedule back on track?

- Corrective actions
 - Change approach
 - Change personnel
 - Others (Participants to list!)

- Change Requests
 - Change happens!
 - Approved through governance
 - May react to beneficial or harmful change
 - May course correct to avoid or mitigate risk

- Project Management Plan & Documents Updates
 - Approved changes may change baseline
 - Schedule management plan
 - New Baseline(s) (Schedule, Cost)

- Organizational Process Updates
 - Lessons learned
Control Schedule: Summary

Inputs:
- Project Management Plan, Project Schedule
- Work Performance Data, Schedule Data
- Project Calendars, Organizational Process Assets

Tools & Techniques:
- Performance Reviews
- Project Management Software, Scheduling Tool, Schedule Compression
- Resource Optimization & Modeling Techniques
- Leads & Lags

Output:
- Work Performance Information
- Schedule Forecasts
- Change Requests
- Organizational Process Assets Updates
- Project Management Plan and Project Documents Updates
Extra Learning

- PMI
 - http://www.pmi.org/passport/mar09/passport_mar09_seven-tips-on-how-to-build-a-solid-schedule.html
- https://www.youtube.com/watch?v=LYusPqtEYJc
- Your friends & co-workers
Closing Thoughts

- Project Management is a Science
 - Science of PM as described in PMBOK

- Actually Managing a Project is an Art
 - Few things that might make for a successful PM are:
 - Domain Knowledge
 - Instinct to spot the risks and take preemptive actions
 - Keen sense to spot the critical tasks/items to address in a project
 - Good communications
 - Foster good teamwork.
 - Keep the stakeholders engaged and motivated
 - Be the “Leader” or the “Strategic one”
 - Planning alone will not get you there, but it is great Start!
Questions
One Last Thought...

The best time to plant a tree is twenty years ago. The second best time is now.

- Chinese Proverb