

Al Biases:
What they are and how to identify and mitigate them

Natalia Modjeska Research Director, DnA Info-Tech Research Group

Do we have the necessary skills?

If not yet, can we acquire or grow them over time?

AWS Machine Learning Services Stack

Speech

Language

Chatbots Forecasting Recommendations

AI SERVICES

Vision

VIDEO

TRANSLATE COMPREHEND

FORECAST PERSONALIZE

AMAZON SAGEMAKER

ML SERVICES

BUILD

Pre-built algorithms & notebooks Data labeling (GROUND TRUTH)

Algorithms & models (AWS MARKETPLACE FOR MACHINE LEARNING)

TRAIN

One-click model training & tuning

Optimization (NEO)

Reinforcement learning

DEPLOY

One-click deployment & hosting

Frameworks

Interfaces

Infrastructure

ML FRAMEWORKS & **INFRASTRUCTURE**

PYT BRCH

All ML is biased All Al is biased

And bias is only going to get worse

"Like relational databases, Al is going to get into every important piece of software."

- Benedict Evans, 2018

Image: <u>Lawrence Livermore National Laboratory</u>

Info-Tech Research Group

"People worry that computers will get too smart and take over the world, but the real problem is that they're too stupid and they've already taken over the world."

Pedro Domingos,"The Master Algorithm", 2015

We can't see bias until the problem is big

Al biases can harm your organization's reputation, ability to deliver services, and more!

And for you personally...



New vendors are riskier than established ones

- Higher ability to solve problems, agility and innovation, but...
- Less dollars
- Higher risk tolerance
- Less diversity on teams
- Less governance
- Privacy is not a cultural priority it?

Al/Algorithmic bias

Systematic and repeatable errors in a computer system that create *unfair* outcomes, such as privileging one arbitrary group of users over others

Definition: Wikipedia

"Apple Card investigated after gender discrimination complaints"

(<u>The New York</u> <u>Times</u>) "Racial Bias
Found in a
Major Health
Care Risk
Algorithm"

(Scientific American)

"COVID-19 vaccine distribution algorithms may cement health care inequalities"

(VentureBeat)

"UK ditches exam results generated by biased algorithm after student protests

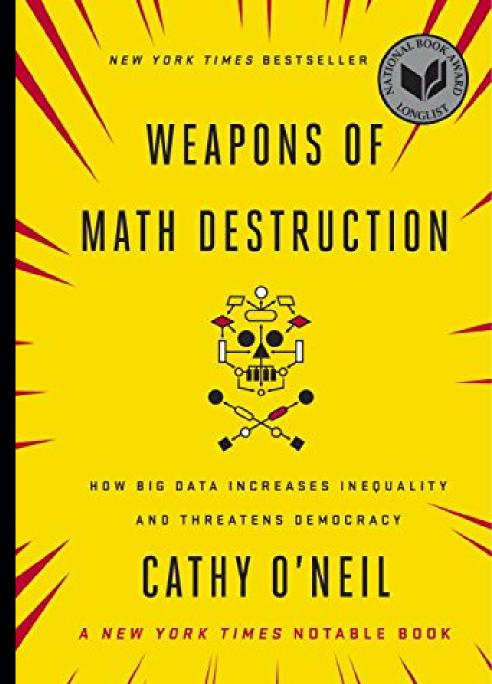
(The Verge)

"Dutch court prohibits government's use of Al software to detect welfare fraud"

(The Guardian)

Biased Al systems are discriminatory

- Title VII of the Civil Rights Act (1964)
- Equal Pay Act (1963)
- Age Discrimination in Employment Act (1967)
- Rehabilitation Act (1973)
- Equal Credit Opportunity Act (1974)
- The Civil Rights Act (1991)
- Fair Housing Act (1968)
- Genetic Information Nondiscrimination Act (2008)
- GDPR, CCPA...
- Illinois Al Video Interview Act...



Biased Al will harm state residents

How do Al/ML systems get biased?

Chef = Data Scientist

Ingredients = Data

Recipe = Algorithm

Al as a service is a DIY meal kit

Biases can be introduced at any step of the ML process and they propagate through it

Data biases, aka ingredients

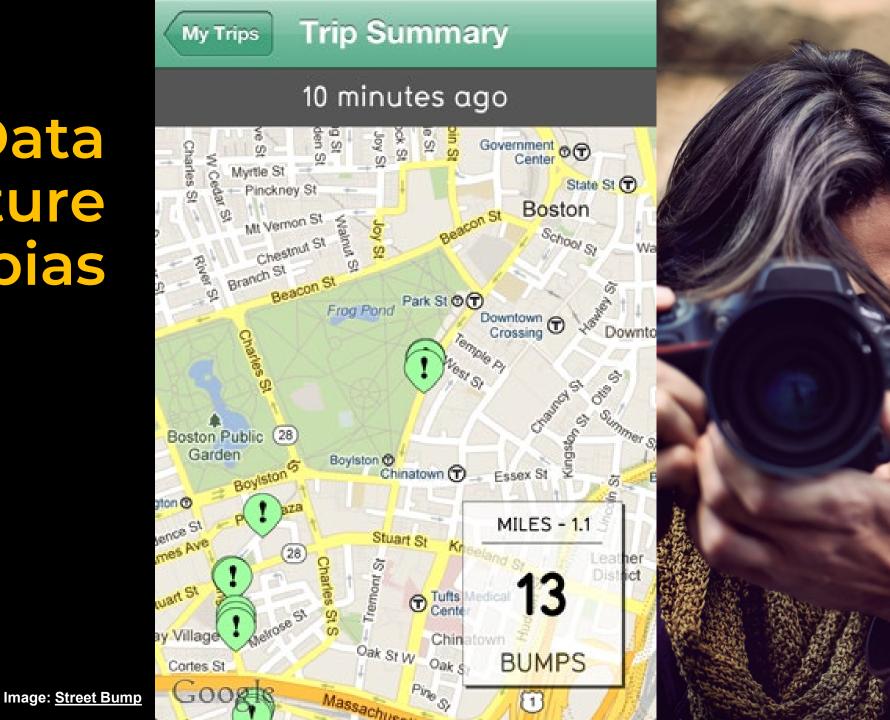
Data selection bias

COMPAS Risk Assessment questionnaire (137 questions)

- Was your father [...] ever arrested [...]?
- How many of your friends/ acquaintances have served time in jail or prison?
- How many of your friends/acquaintance are gang members?
- Did a parent [...] have a drug or alcohol problem?
- [...] have some of you fiends or family been crime victims?
- How often do you have barely enough money to get by?

Source: Documentcloud.org

Data capture bias



"While massive datasets may feel abstract, they are intricately linked to physical place and human culture."

Kate Crawford, 2013

"Data is destiny" (Joy Buolamwini)

Remember Amazon's sexist recruiting tool?

60% Percentage males in workforce

74% Percentage male managers

Data is a social construct

One in four children will experience some form of abuse or neglect in their lifetimes

Child abuse became academic discipline in the US in the 1970s

"If we allowed a model to be used for college admissions in 1870, we'd still have 0.7% of women going to college. Thank goodness we didn't have big data back then!"

- Cathy O'Neil, 2014

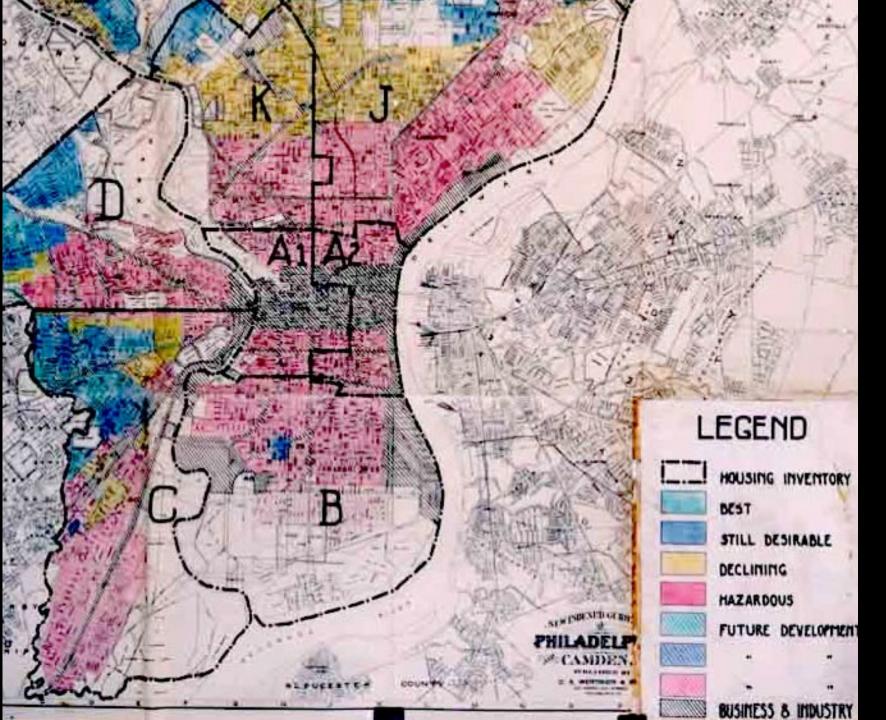
Are there gaps in your data?

"We definitely oversample the poor [...] All of the data systems we have are biased. We still think this data can be helpful in protecting kids."

Erin Dalton, director of Allegheny County's Office of Data Analysis, Research and Evaluation

"No algorithm focused on human behavior is neutral. Anything which is trained on historical human behavior embeds and codifies historical and cultural practices."

- Cathy O'Neil, 2014



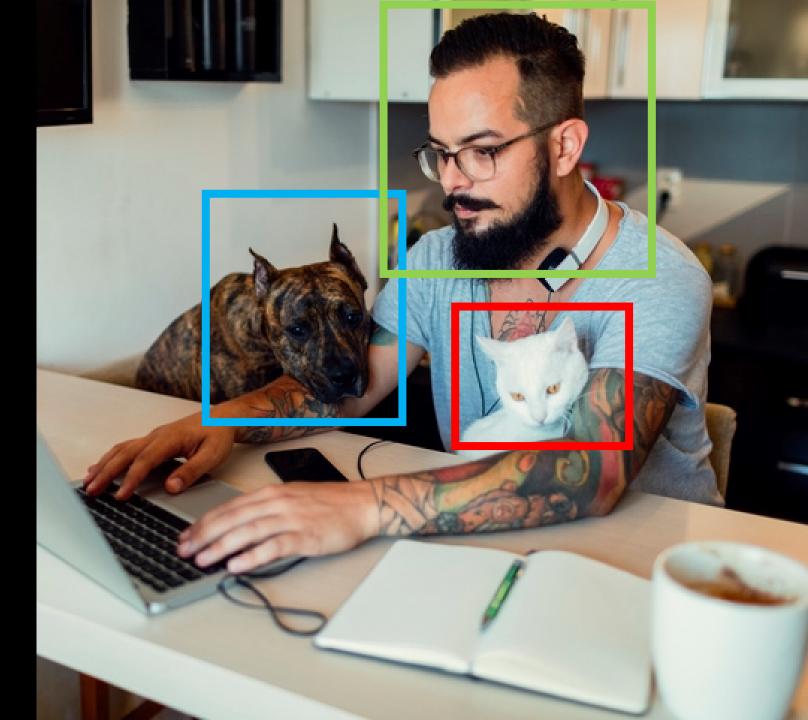
Machine biases replicate, amplify and systematize societal biases

Image:

"A HOLC 1936 security map of Philadelphia showing redlining of lower income neighborhoods," Wikimedia Commons

Data (ingredients) are labeled

Dog, Man, Cat



Data label bias

Are these pictures or paintings?

Data label bias

What about these?



Data itself may contain a lot of surprises

Sensitive attributes may be redundantly encoded in data

- Music tastes > age
- Shopping patterns > gender
- Zip codes > race, income
- Family status > gender
- Education > race
- Height, weight > gender

What else is hiding in your data?

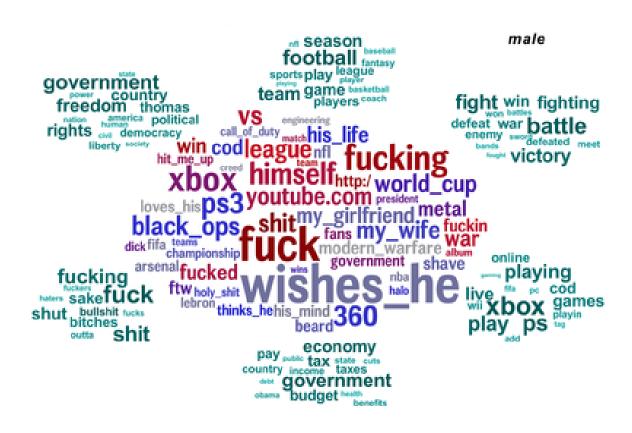
FEMALES

female loving loving wonderful

Figure 3. Words, phrases, and topics most highly distinguishing females and males.

Schwartz, H. Andrew, et al. <u>"Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach." PLOS ONE</u> 8(9), 25 Sept. 2013. Web.

MALES



Questions to ask of your Al vendor

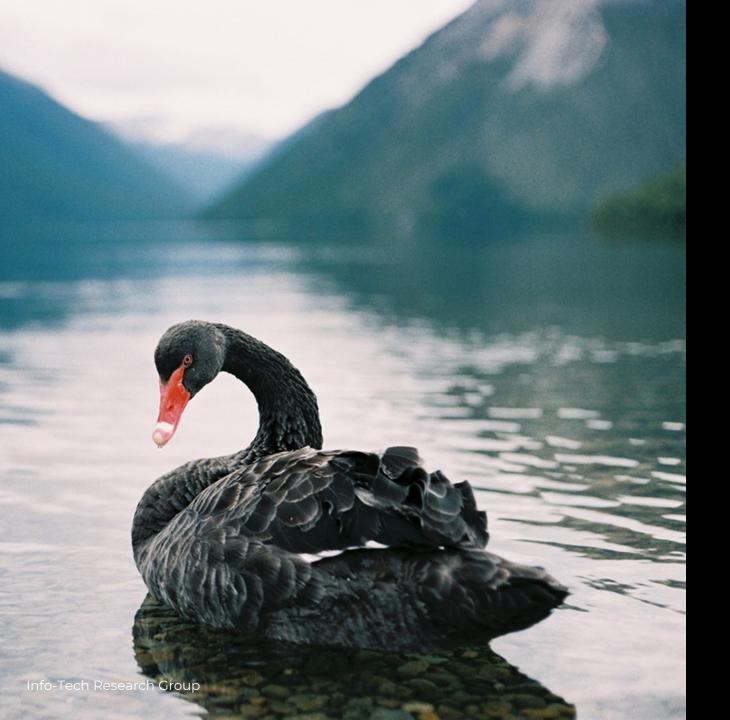
- Which data sets was the service trained on?
 - Public/Open-source? Built-for-purpose? Adapted?
 - Transformation of data?
 - Quality assurance process?
- Was any of the data synthetic?
- Who labeled the training data? (Which country?)
- Was the data set checked for bias?
 - Which biases?
 - Detection methods
- Was any remediation performed?
 - Techniques used
 - Results: before and after

Algorithm and proxy biases, aka what can go wrong with the recipe

Algorithm is a recipe for how to convert data into predictions

- Boil
- Scramble
- Poach

- Bake
- Omelet,
- Fry, etc..



Inductive bias is assumptions about the future

K-nearest neighbor classifier

A new swan will be the same color as the most common color of the five nearest previous swan sightings.

Naive Bayes

Each swan color has a normal distribution about a certain latitude.

Neural networks

The swan color distribution can be represented using 20 properly scaled and rotated sigmoidal functions over location

Source: InductiveBias, 2013

"Racial Bias
Found in a
Major Health
Care Risk
Algorithm"

(Scientific American)

What are we really predicting?

of prior arrests > committing a new crime? Or probability of being arrested again?

Questions to ask of your Al vendor

- Which algorithms were used and why?
- Which proxies?
- How is performance (accuracy) measured?
 - False positive
 - False negatives
 - Intersectionally
 - Which definition of fairness (21-70 mathematical definitions out there)
- Trade-offs between accuracy and fairness?

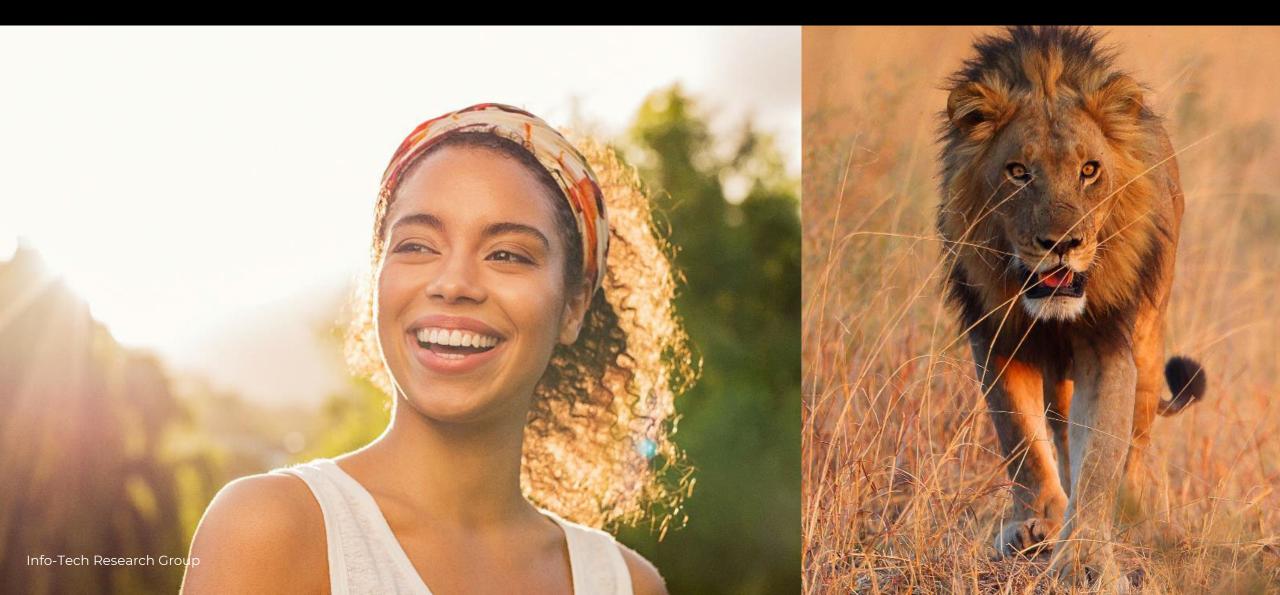
Design biases, aka the chef

Many Al biases are a product o human cognitive biases

If X, then Y

Human cognitive biases are mental shortcuts

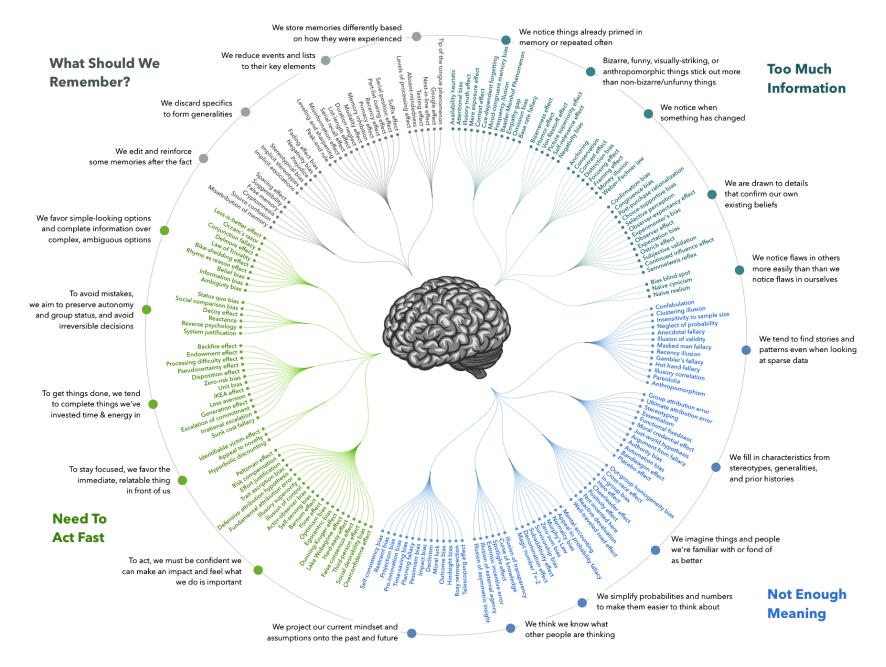
Built-in mechanisms to understand the world and make decisions quickly



Just how biased are we?

Almost 200 human cognitive biases identified

COGNITIVE BIAS CODEX



"Applied machine learning is basically feature engineering."

 Andrew Ng, Stanford University, quoted in <u>Google Cloud</u>

- Data cleansing
- Partitioning: train, validate, test
- Tuning: outliers, missing values, etc.
- Transformation: numerical to categorical
- Feature extraction: text to word vectors
- Feature selection, removing redundancy
- New feature creation

"[Machine learning] models are opinions embedded in mathematics."

Cathy O'Neill,

"Weapons of Math Destruction"

Which of these data sets is most representative of what a car is?

PASCAL cars SUN cars Caltech101 cars ImageNet cars LabelMe cars

Image: "Unbiased Look at Dataset Bias," Torralba & Efros

Info-Tech Research Group

Non-canonical views

SUN cars

Caltech101 cars

Side views

Race cars

LabelMe cars

Image: Torralba & Efros

Team diversity is the best mechanism to mitigate Al biases

- **18%** female data scientists
- **18%** female authors at leading Al conferences
- 80% male Al professors
- 15% female AI researchers at Facebook; 10% at Google
- 2.5% black workforce at Google;
 4% at Facebook and Microsoft each

Questions to ask of your Al vendor

- How diverse is the development team?
- Were domain experts involved?
- What are the intended use cases? (And out-of-scope)
- How and by whom was the service tested? (Metrics)
 - Third party?
- Were the potential sources of biases analyzed?
 - Do they arise from data? Feature engineering? Algorithms used? Assumptions? Etc.
 - How were they addressed?
- Are the service outputs explainable?

But... ultimately, you, not the vendor, are responsible

- What is your team composition like?
- What data will you be using?
- Quality?
- How well does it align with the vendor's training data?

Info-Tech Research Group

Use tools and humans to identify biases

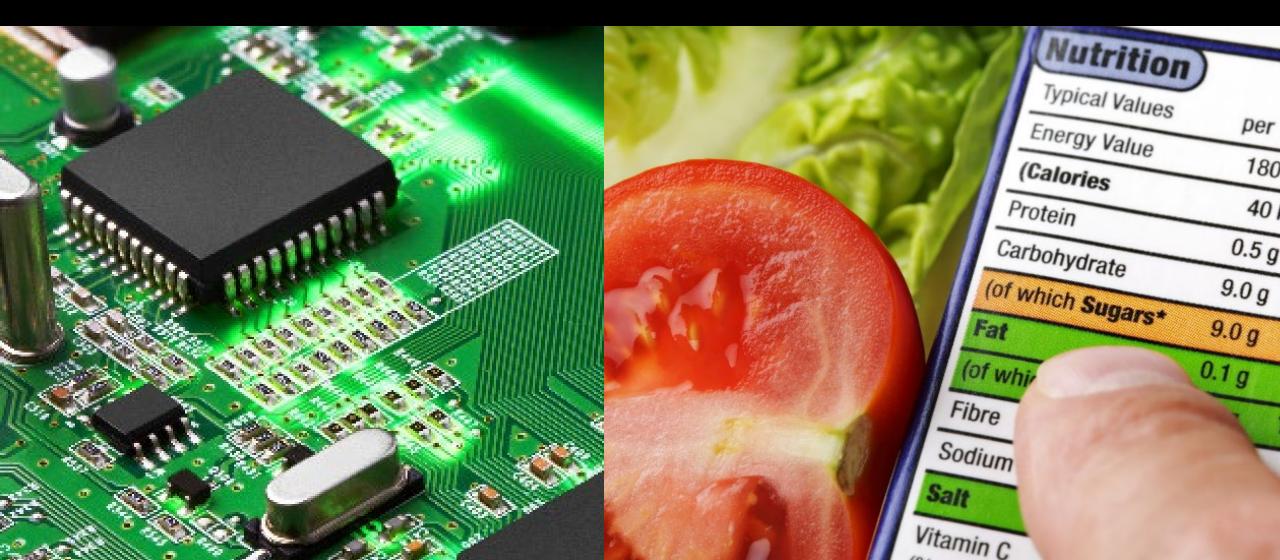
- Al Fairness 360 Open Source Toolkit (IBM)
- What-If, Facets, Fairness Indicators (Google)
- FairLearn (Microsoft)
- SageMaker Clarify (Amazon)
- Themis (UMASS)
- FairTest (Columbia)
- FairML (GitHub)
- Cortex Certifai (CognitiveScale)

Leave no stone unturned and no assumption unexamined

Frameworks to mitigate Al biases

Datasheets for Datasets

Model Cards for Model Reporting



FactSheets: Increasing Trust in Al Services Through Supplier's **Declaration of** Conformity

FactSheets: Increasing Trust in AI Services through Supplier's Declarations of Conformity

M. Arnold, R. K. E. Bellamy, M. Hind, S. Houde, S. Mehta, A. Mojsilović, R. Nair, K. Natesan Ramamurthy, D. Reimer, A. Olteanu, D. Piorkowski, J. Tsay, and K. R. Varshney IBM Research

1 Yorktown Heights, New York, Bengaluru, Karnataka

Abstract

Accuracy is an important concern for suppliers of artificial intelligence (AI) services, but considerations beyond accuracy, such as safety (which includes fairness and explainability), security, and provenance, are also critical elements to engender consumers' trust in a service. Many industries use transparent, standardized, but often not legally required documents called supplier's declarations of conformity (SDoCs) to describe the lineage of a product along with the safety and performance testing it has undergone. SDoCs may be considered multi-dimensional fact sheets that capture and quantify various aspects of the product and its development to make it worthy of consumers' trust. Inspired by this practice, we propose FactSheets to help increase trust in AI services. We envision such documents to contain purpose, performance, safety, security, and provenance information to be completed by AI service providers for examination by consumers. We suggest a comprehensive set of declaration items tailored to AI and provide examples for two fictitious AI services in the appendix of the paper.

1 Introduction

Artificial intelligence (AI) services, such as those containing predictive models trained through machine learning, are increasingly key pieces of products and decision-making workflows. A service is a function or application accessed by a customer via a cloud infrastructure, typically by means of an application programming interface (API). For example, an AI ser-

vice could take an audio waveform as input and return a transcript of what was spoken as output, with all complexity hidden from the user, all computation done in the cloud, and all models used to produce the output pre-trained by the supplier of the service. A second more complex example would provide an audio waveform translated into a different language as output. The second example illustrates that a service can be made up of many different models (speech recognition, language translation, possibly sentiment or tone analysis, and speech synthesis) and is thus a distinct concept from a single pre-trained machine learning model or library.

In many different application domains today, AI services are achieving impressive accuracy. In certain areas, high accuracy alone may be sufficient, but deployments of AI in high-stakes decisions, such as credit applications, judicial decisions, and medical recommendations, require greater trust in AI services. Although there is no scholarly consensus on the specific traits that imbue trustworthiness in people or algorithms [1, 2], fairness, explainability, general safety, security, and transparency are some of the issues that have raised public concern about trusting AI and threatened the further adoption of AI beyond low-stakes uses [3, 4]. Despite active research and development to address these issues, there is no mechanism yet for the creator of an AI service to communicate how they are addressed in a deployed version. This is a major impediment to broad AI adoption.

Toward transparency for developing trust, we propose a FactSheet for AI Services. A FactSheet will contain sections on all relevant attributes of an AI service, such as intended use, performance, safety, and security. Performance will include appropriate accuracy or risk measures along with timing information. Safety, discussed in [5, 3] as the minimiza-

^{*}A. Olteanu's work was done while at IBM Research. Author is currently affiliated with Microsoft Research.

Al Registers: A tool to create transparency and accountability around AI/ML applications in government

Source: Algorithmic Systems of Amsterdam

Info-Tech Research Group

Algorithmic systems of Amsterdam

Learn about the use cases where we currently utilise algorithmic systems

Automated parking control

In Amsterdam, the number of cars allowed to park in the city is limited, keeping the city liveable and accessible. The municipality checks whether a parked car has the right to be parked, for example, because parking fees have been paid via a parking meter or app, or because the owner has...

> Read more

Economic Services

Holiday rental hou fraud...

Amsterdam has limited living a both for citizens and visitors. If citizen wants to rent out their houseboat to tourists, they need meet certain requirements. For example, they can do so for a maximum of 30 nights per year maximum of 4 people at a time must...

> Read more

Coverview.

Reporting issues in public space

When someone encounters rubbish or a maintenance issue on the street or in a park, they can report this to the municipality via an online reporting systems. A dangerous traffic situation or disturbance from people or cafe's can also be reported.

This system used to be a collection of drop-down menus, from which the user would pick the assegory that beet suited their report. The department responsible for a contain category would then take care of the report. However, as the municipality is a complex organisation. there are countiess astegories. Many times the wrong astegory would be chosen, resulting in delays. Now, an algorithm recognices certain keywords, for ecertoile, 'waste' and 'sidewalk'. From these keywords, it determines which category it belongs to and ultimately, which department within the municipality should examine the case.

As a result, there are fewer administrative states for the person reporting on the issue. Also, the report can be processed much fester, because It arrives at the right department more quickly.

CIO-office@amsterdam.nl

Contact observe

14020

Contact Information

Research, Information & Statistics (CIS)

Contact person for inspirites

Adviser R&D (Adviseur Ondertoak en ontvikkeling)

External varieties:

Developed in-house

More detailed information on the system

Here you can ger acquainted with the information used by the system; the operating logic, and its governance in the areas that interest you.

The text of the report is broken down into single words. The model has been trained to recognize the weight of each word by using TP-DF or fermifrequency-inverse document frequency. This representation will create weights for words that show how unique they are for the specific citizen report compared to the overall collection. A word such as 'the' will get a lide weight, and a word such as 'garbage' will get a higher weight. This makes it perfect for classes that have very specific words describing them. It also helps with bigrains or unigrams (Like: "thank you", "please") occurring in all documents not to affect the classification too much.

A logistic regression (a machine-learning technique) of this combination of words is then used to determine which ostegory is most likely to fit, and therefore which department within the municipality needs to act on the report.

Consum. Actachment Model architecture Es Reporting issues in outside solide architecture image.

Performance

[2] Unk to source code

This algorithm can detect very accurately which category a combination of words belongs to: the algorithm has a score of 0.88 (macroweighted F1 score). Other methods have also been implemented (WDV CNN + LSTM, BERT) but have been found to perform less. More information: https://medium.com/mainten-suks/how-to-use-machine-learning-for-the-class/floation-of-citizen-service-requestsb71157985556

Non-discrimination	Show More	Y
Human oversight	Show Mare	v
Risks	Show More	v

Was this information useful?

Source: https://algoritmeregister.amsterdam.nl/en/reporting-issues-in-public-space/

"Without trust, there is no use for AI."

Mikko Rusama, City of Helsinki Chief Digital
 Officer

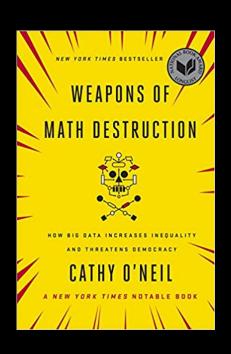
For more information, consult blueprint

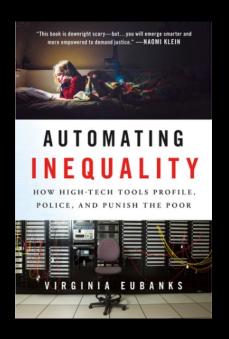


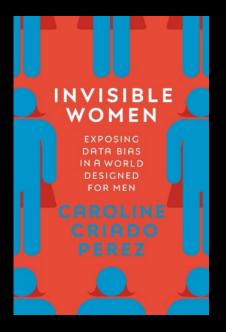
Recommended resources

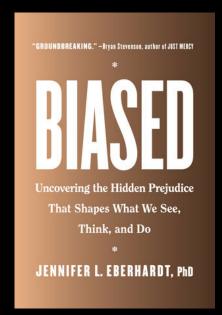
Books

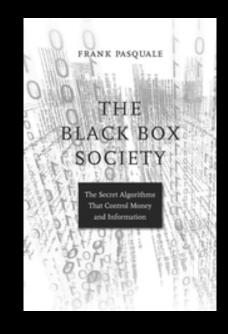
Videos











"The Trouble with Bias"

NIPS 2017 Keynote by Kate Crawford, cofounder of AlNow Institute at NYU, principal researcher at Microsoft, and distinguished research professor at NYU "Translation Tutorial:
21 Fairness
Definitions And Their
Politics"

by Arvind Narayanan, Professor of Computer Science at Princeton University

Thank you!

Questions?