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Do we have the
necessary skills?

If not yet, can we acquire or grow
them over time?
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All ML is biased
All Al is biased



And bias is
only going to
get worse

“Like relational
databases, Al Is
going to get into
every important
piece of software.”

— Benedict Evans, 2018

Image: Lawrence Livermore National Laborator
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https://commons.wikimedia.org/wiki/File:IBM_704_mainframe.gif
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“People worry that computers will
get too smart and take over the
world, but the real problem is that
they're too stupid and they've
already taken over the world.”

— Pedro Domingos,
"The Master Algorithm”, 2015



We can’t
see bias

until the
problem
is big
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Al biases can
harm your
organization’s
reputation,
ability to
deliver
services, and
more!



And for you
personally...
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New vendors are riskier
than established ones

Higher ability to solve problems,
agility and innovation, but...
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« |ess dollars
Higher risk tolerance

 |ess diversity on teams
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* LeS5S governance

 Privacy is not a cultural priority it?




Al/Algorithmic bias

Systematic and repeatable
errors in a computer system
that create unfair outcomes,

such as privileging one arbitrary
group of users over others

Definition: Wikipedia
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https://en.wikipedia.org/wiki/Algorithmic_bias

“Apple Card
investigated
after gender
discrimination
complaints”

(The New York
Times)



https://www.nytimes.com/2019/11/10/business/Apple-credit-card-investigation.html

“Racial Bias
Found in a
Major Health
Care Risk
Algorithm”

Scientific
American
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“COVID-19
vaccine
distribution
algorithms
may cement

health care
inequalities”

(VentureBeat)



https://venturebeat.com/2020/12/19/covid-19-vaccine-distribution-algorithms-may-cement-health-care-inequalities/

“UK ditches
exam results
generated by
biased
algorithm
after student
protests

(The Verge)



https://www.theverge.com/2020/8/17/21372045/uk-a-level-results-algorithm-biased-coronavirus-covid-19-pandemic-university-applications

“Dutch court
prohibits
government’s
use of Al
software to

detect welfare
fraud”

(The Guardian)
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Biased Al systems are o e g
discriminator | o
Y \ WEAPONS OF,

Title VII of the Civil Rights Act (1964)

Equal Pay Act (1963) CMATH DESTRUCTION

Age Discrimination in Employment Act (1967)

Rehabilitation Act (1973) €5

- - 242
Equal Credit Opportunity Act (1974) cﬁrj
The Civil Rights Act (1991) "33_,{
Fair Housing Act (1968) _ il _. ;
Genetic Information Nondiscrimination Act RGP O SR
(2008)

GDPR, CCPA... ~ CATHY O'NEIL

lllinois Al Video Interview Act... A NEW YORK TIMES NOTABLE BOOK
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How do AlI/ML
systems get biased?
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Chef = Data Scientist
Ingredients = Data

Recipe = Algorithm
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Al as a service
is a DIY meal kit




Biases can be
introduced at
any step of
the ML
process and
they
propagate
through it

Info-Tech Research Group



Data biases, aka
ingredients



Data selection bias

COMPAS Risk Assessment
guestionnaire (137 questions)

 Was your father [..] ever arrested [...]?

« How many of your friends/ acquaintances have
served time in jail or prison?

« How many of your friends/acquaintance are
gang members?

« Did a parent [..] have a drug or alcohol problem?

e [..] have some of you fiends or family been
crime victims?

« How often do you have barely enough money to
get by?

Source: Documentcloud.org
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http://www.streetbump.org/about

“While massive datasets may
feel abstract, they are
intricately linked to physical
place and human culture.”

— Kate Crawford, 2013



“Data is deStiny” (Joy Buolamwini)
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Data is a
social
construct

One in four children will
experience some form of
apbuse or neglect in their
lifetimes

Child abuse became
academic discipline in
the US in the 1970s




“If we allowed a
model to be used for
college admissions
in 1870, we'd
still have 0.7% of

women going to
college. Thank
goodness we didn’t
have big data back
then!”

— Cathy O’Neil, 2014




Are there gaps in
your data?

“We definitely oversample the poor
[...] All of the data systems we have
are biased. We still think this data \
can be helpful in protecting kids.”

Erin Dalton, director of Allegheny County’s
Office of Data Analysis, Research and
Evaluation



“No algorithm focused on human
behavior is neutral. Anything
which is trained on historical
human behavior embeds and

codifies historical and cultural
practices.”

— Cathy O'Neil, 2014
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Data
(ingredients)
are labeled

Dog, Man,
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Data label b
Are these pictures
or paintings?
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Data label bias

What about these?
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Data itself may contain
a lot of surprises



Sensitive attributes
may be redundantly
encoded in data

 Music tastes > age
 Shopping patterns > gender
« Zip codes > race, Income
 Family status > gender
 Education > race

« Height, weight > gender
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What else is hiding in your data?
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Figure 3. Words, phrases, and topics most highly
distinguishing females and males.

Schwartz, H. Andrew, et al. “Personality, Gender, and Age in the Language of Social
Media: The Open-Vocabulary Approach.” PLOS ONE 8(9), 25 Sept. 2013. Web.
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https://doi.org/10.1371/journal.pone.0073791

Questions to ask of your Al vendor

« Which data sets was the service trained on??

Public/Open-source? Built-for-purpose? Adapted?
Transformation of data?
Quality assurance process?

 Was any of the data synthetic?
 Who labeled the training data? (Which country?)

« Was the data set checked for bias?

Which biases?
Detection methods

 Was any remediation performed?

Technigues used
Results: before and after

Info-Tech Research Group



Algorithm and proxy
biases, aka what can go
wrong with the recipe



Algorithm is a recipe for how to convert
data into predictions

* Boil - Bake
 Scramble +Omelet,
* Poach * Fry, etc..

Info-Tech Research Group 44



Inductive bias is
assumptions
about the future

K-nearest neighbor classifier
A new swan will be the same color as
the most common color of the five
nearest previous swan sightings.

Naive Bayes

Each swan color has a normal
distribution about a certain latitude.

Neural networks
The swan color distribution can be

represented using 20 properly scaled

and rotated sigmoidal functions over
location

Source: InductiveBias, 2013


http://inductivebias.com/Blog/what-is-inductive-bias/

“Racial Bias
Found in a
Major Health
Care Risk
Algorithm”

Scientific
American
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What are we really
predicting?

# of prior arrests > committing a new
crime? Or probability of being arrested
again?




Questions to ask of your Al vendor

Which algorithms were used and why?
Which proxies?

« How Is performance (accuracy) measured?
« False positive
« False negatives
« Intersectionally
«  Which definition of fairness (21-70 mathematical definitions out there)

* Trade-offs between accuracy and fairness?

Info-Tech Research Group



Design biases,
aka the chef
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Human
cognitive

mental
shortcuts
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Built-in mechanisms to understand the world
and make decisions quickly
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Just how
biased
are we??

Almost 200
human
cognitive
blases
identified

Image: Wikipedia, “Cognitive Bias Codex”
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“Applied machine learning is
basically feature engineering.”

— Andrew Ng, Stanford University,
quoted in Google Cloud

» Data cleansing

» Partitioning: train, validate, test

* Tuning: outliers, missing values, etc.

* Transformation: numerical to categorical
» Feature extraction: text to word vectors

» Feature selection, removing redundancy
* New feature creation

Info-Tech Research Group



https://cloud.google.com/solutions/machine-learning/data-preprocessing-for-ml-with-tf-transform-pt1

“IMachine learning] models
are opinions embedded in
mathematics.”

— Cathy O’Neill,

“Weapons of Math Destruction”
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PASCAL cars

Non-canonical views
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Team diversity is the best
mechanism to mitigate Al
biases

e 18% - female data scientists

* 18% - female authors at leading Al
conferences

« 80% — male Al professors

e 15% - female Al researchers at
Facebook; 10% at Google

« 2.5% - black workforce at Google;
4% at Facebook and Microsoft each

Info-Tech Research Group



Questions to ask of your Al vendor

« How diverse is the development team?
« Were domain experts involved?
 What are the intended use cases? (And out-of-scope)

« How and by whom was the service tested? (Metrics)
Third party?

 Were the potential sources of biases analyzed?

Do they arise from data? Feature engineering? Algorithms used? Assumptions? Etc.
How were they addressed?

 Are the service outputs explainable?

Info-Tech Research Group



But... ultimately, you, not the vendor,
are responsible

 What is your team composition like?
 What data will you be using?
o Quality?

« How well does it align with the vendor’s training
data?

Info-Tech Research Group
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Use tools and
humans to
identify biases

* Al Fairness 360 Open Source Toolkit (IBM)
 What-If, Facets, Fairness Indicators (Google)
» FairLearn (Microsoft)

« SageMaker Clarify (Amazon)

* Themis (UMASS)

» FairTest (Columbia)

* FairML (GitHub)

» Cortex Certifai (CognitiveScale)

Info-Tech Research Group




Leave no
stone
unturned
and no
assumption

uhexamined
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Frameworks to mitigate Al biases

Datasheets for Datasets Model Cards for Model Reporting
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FactSheets:
Increasing Trust
in Al Services
Through
Supplier’'s
Declaration of

Conformity

100% EXPERT

— —
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FactSheets: Increasing Trust in Al Services
through Supplier’s Declarations of Conformity
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wenpdix of the paper.
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Al Registers:

A tool to create
transparency and
accountability
around Al/ML

applications in
government

Source: Algorithmic Systems of Amsterdam
Info-Tech Research Group

2 . »
| Economic Services Departments

Automated parking
control

n Amsterdam, the number of cars
allowed to park in the city is limited
keeping the city liveable and

accessible. The municipality checks
right

whether a parked car has the 1 gnitio

be parked, for example, because

parking fees have been paid viz a

parking meter or app, or because the

owner nas...

> Read more

A\

Algorithmic systems of Amsterdam

Learn about the use cases where we currently utilise algorithmic systems

" Economic Services

Holiday rental hou
fraud...

meet certain requirements. Fo
example, they can do so for a

maximum of 30 nights per yea
maximum of 4 people at a tim

must..

> Read more


https://algoritmeregister.amsterdam.nl/en/ai-register/

Mora detailed information on the systam
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“Without trust,
there is no use for Al.”

— Mikko Rusama, City of Helsinki Chief Digital
Officer



For more information, consult blueprint
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What is a Workshop?
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Recommended resources

“This bosk is downright scary—bat... you will emerge smarter and
more empowered to demand justice.” —MNAOMI KLEIN
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NIPS 2017 Keynote
(YouTube) by Kate Crawford,

cofounder of AINow

Institute at NYU, principal by Arvind Narayanan,
researcher at Microsoft, Professor of Computer
and distinguished Science at Princeton

research professor at University
NYU
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https://www.infotech.com/research/social-ethics-of-big-data-mining-and-ai-in-banking
https://www.infotech.com/research/social-ethics-of-big-data-mining-and-ai-in-banking
https://www.infotech.com/research/social-ethics-of-big-data-mining-and-ai-in-banking
https://www.youtube.com/watch?v=MNuFcIRlwdc
https://www.youtube.com/watch?v=fMym_BKWQzk
https://www.youtube.com/watch?v=jIXIuYdnyyk
https://www.infotech.com/research/social-ethics-of-big-data-mining-and-ai-in-banking

Thank you!

Questions?

Info-Tech Research Group
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